If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-2y-8=0
a = 9; b = -2; c = -8;
Δ = b2-4ac
Δ = -22-4·9·(-8)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{73}}{2*9}=\frac{2-2\sqrt{73}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{73}}{2*9}=\frac{2+2\sqrt{73}}{18} $
| 5.2b=-5.76+4.9b | | 6z+7=3z-48 | | r÷5.5=18. | | -8y+9+5y=-21 | | x/(-3)+12=5 | | y-9.4=17.52 | | -7u+4(u-3)=-21 | | 1+n/9=0 | | 9w^2+w-6=0 | | (8x+36)-(5x+60)=0 | | (8x+36)-(5x+60)=90 | | x+3.3=4.9 | | 3.2(x+10)=76.8 | | 6p²+7p=2 | | 2w^2-9w+3=0 | | (8x+36)+(5x+60)=180 | | a+45.6=73.2 | | -100=x=20 | | (7y-7)+(4y+6)+(20y-11)=360 | | 11x+2+56+56=180 | | 6r^2-4r+5=0 | | 15b+1=20+14b | | (6n+1)-2n=5 | | 5a+10-2a-5+2a+10-5a-5= | | 4(3x-5)=6x+(13+x) | | -0.16-(x)0.03=-0.64 | | 9m+5+1m-2=2 | | 14-(3x+5)+2x=9 | | w+158.72=-45.3 | | -5x-11=-26 | | 31=10-7v | | 18x+6=18x-7 |